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Chapter 1

Introduction

Nowadays a huge amount of information is available via the World Wide Web.
Everyone can distribute data and a lot of companies sell their goods online. This
leads to several problems especially to find information a user is looking for. The
reason behind is that computers, unlike humans, cannot really gather the facts and
particularly not understand them. Also the decentralized organization of the Inter-
net does not help to solve this problem, in contrast, it supports the heterogeneity of
information. Due to the facts mentioned above it is not possible to get all informa-
tion and to represent them in a consistent way. The Semantic Web, introduced by
Tim Berners-Lee 2001 [2], tries to find a solution by constituting all information in
a machine-readable way. Discovering and integrating information and additionally
infer new data out of given data are the main Semantic Web challenges. To achieve
the ideas some standards are necessary to have a common foundation. Therefore
XML (Extensible Markup Language) [3], as a standard of data exchange, the lan-
guages RDF [12] (Resource Description Framework) and OWL [16] (Web Ontol-
ogy Language) are implemented and recommended by the W3C (World Wide Web
Consortium) 1. RDF, especially RDF-Schema, a layer on top of RDF, and OWL are
so-called ontology languages to qualify ontologies. An ontology contains informa-
tion about a particular domain of interest in a machine-readable way. There are
no predefined rules how to create an ontology or which vocabulary to use. Hence
anyone can create an ontology in their own way and the ontologies can differ a lot
although they describe the same issue or domain. That is why integrating or com-
paring ontologies is not as easy as it might seem. Ontology matching tries to find
solutions for integrating heterogeneous ontologies and is a fundamental require-
ment for achieving the vision of the Semantic Web.

1http://www.w3c.com
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CHAPTER 1. INTRODUCTION 2

1.1 Ontology Matching

In this section ontology matching and its components are formalized. After giving
a first overview, the existing ontology matching techniques and strategies are ex-
plained. Ontology matching is a large area of research and there are conferences
which only deal with this topic such as the OAEI (Ontology Alignment Evalua-
tion Initiative) [4]. Additionally on some other conferences papers about ontology
matching are presented, like on the ISWC (International Semantic Web Confer-
ence) 2. Moreover many journals pick up the topic, such as the Journal on Data
Semantics. About thirty matching systems show the relevance of ontology match-
ing, Falcon [10], SAMBO [14], CIDER [8], ASMOV [11] to mention just a few.
For further information about conferences, journals or any other kind, see 3. A
whole book with about 300 pages called ”Ontology Matching” written by Euzenat
and Shvaiko [6] only concentrates on ontology matching. Some definitions, as
suggested by [6], are needed for further explanations:

Definition 1 An ontology is a tuple o =< C, I, R, T, V,≤,⊥,∈, => such that:

• C is a set of classes

• I is a set of individuals

• R is a set of relations

• T is a set of data

• V is a set of values

• ≤ is a relation on (C×C) ∪ (R×R) ∪ (T×T) called specialization

• ⊥ is a relation on (C×C) ∪ (R×R) ∪ (T×T) called exclusion

• ∈ is a relation over (I×C) ∪ (V×T) called instantiation

• = is a relation over I × R × (I∪V) called assignment

Classes are the main entities and represent a set of individuals in the domain.
Every individual is a particular component and belongs to a class. All relations
are functions and relate a class to another class or a datatype. Especially in OWL
the relations are divided in two groups: object properties and datatype proper-
ties. Object properties have the range classes, datatype properties map classes to

2http://iswc2008.semanticweb.org/
3http://ontologymatching.org/
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datatypes such as string or integer. Values are just used to express individuals, for
example to define the name of an individual. Specialization conforms to the con-
cept of generalization. A class/relation/datatype can be more general/specific than
another class/relation/datatype. Imagine a class called Person and another class
Man. Man ≤ Person means that every Man is also a Person but not the other way
round. OWL calls ≤ subClassOf/subPropertyOf and ≥ which is not necessary but
often advantageous superClassOf/superPropertyOf. Exclusion describes disjoint
classes/properties, having intersection empty, in OWL the exclusion is introduced
by disjointWith. Allocating an individual to its corresponding class is called in-
stantiation. The last component of an ontology is called assignment and relates an
individual to another one or to a value by a certain property. Imagine an individual
of class Human and this individual should be related to a string which express its
last name. Additionally a datatype property lastName is available which relates a
human to its last name. Referring the three parts: individual, property, here last-
Name, and a value, here an arbitrary string, is the task of the assignment relation.
After explaining all necessary concepts of an ontology they are available for further
definitions.

Definition 2 Given two ontologies O1 and O2, Q a function defining a set of
matchable elements, a set of semantic relations R and a confidence structure D.
A correspondence is a 4-tuple: < e, e′, r, n > such that:

• e ∈ Q(O1)

• e′ ∈ Q(O2)

• r ∈ R

• n ∈ D

Mostly e and e’ are entities of the ontologies such as classes, properties or
individuals. The semantic relation r between e and e’ is often confined to the
equivalence relation, but is not restricted to the equivalence relation in general. A
confidence structure is an ordered set of degrees which contains a smallest and a
highest element. Usually n is a numerical value in between 0.0 and 1.0. and can
be seen as a measure of trust in a conceivable correspondence. To illustrate the
definition, a simple example for a correspondence between two classes with an
equivalence relation:
http://foo.com/ontology1#Person = http://foo.com/ontology2#Human.
The example declares that every Person is also a Human and vice versa. Because
of having a full confidence no further declaration is given. For identifying entities
their names are represented by URIs (universal resource identifier).
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Figure 1.1: Overview of matching approaches divided into several levels

Definition 3 Given two ontologies O1 and O2 an alignment is a set of correspon-
dences.

Now all needed definitions are given and ontology matching can be defined.
Ontology matching is the process of finding all correct correspondences between
two ontologies. Naturally not every correspondence is found and not every one is
necessarily correct but both are aspired.

After all important terms have been defined, existing techniques and approaches
for ontology matching are explained. A short overview of several ontology match-
ing strategies is shown in Figure 1.1 based on the figure in [19].

On the first level the strategies are separated into schema-based strategies on
the left and instance-based strategies on the right. Schema-based systems only
use information about the ontology schema and not, differently to instance-based
systems, information about instances. Not every ontology necessarily contains in-
stances hence the instance-based strategy cannot always be applied.
The second level shows the partition into element-level and structure-level poli-
cies. While element-level matching systems only consider entities isolated to find
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a correspondence, e.g. town = city, structure-level systems analyze combinations
of entities, e.g. sister = sibling with hasGender female. Instance-based matching
can only be element-based because no structure for individuals exists.
Next level divides matching strategies into linguistic and constraint-based approaches.
Linguistic approaches base on names and texts of the entities to find correspon-
dences. There are several possibilities where additional information such as dic-
tionaries are not required, for example to compare names, prefixes, suffixes, sub-
strings or to compute special similarity metrics like the hamming distance. But it is
also possible to use thesauri or dictionaries in order to find synonyms, e.g. person
= human, hypernyms, e.g. animal is a hypernym of dog, generalization or names
in other languages. Ontologies often include constraints such as restrictions on do-
main or range of a relation, e.g. not every relation can link an instance to another,
or cardinalities, how many instances of a class can be part of one relation. Also the
class and relation hierarchy can be used to draw conclusions. Only element-level
approaches can apply linguistic conceptions because they compare isolated entities
with an obvious, existent name instead of structure-level.
Further criteria can distinguish various approaches such as the matching cardinality
or auxiliary information. The matching cardinality determines how many entities
of an ontology can match how many entities out of another ontology. In general
three options are feasible: 1:1, 1:n, n:m. 1:1 means every entity can only match at
most one entity, 1:n one entity can match arbitrary entities of the other ontology
and n:m claims no restriction at all.

Furthermore taking the decision which candidates are correspondences is not
always easy. There might be various possibilities and especially if a 1:1 approach
is chosen, a matching system has to decide which truly is a correspondence. Often
a certain threshold is determined and every similarity value below this boarder is
not examined any further.

Making use of auxiliary information, such as dictionaries, thesauri, user-provided
data or the reuse of available alignments can help to find new correct correspon-
dences and to avoid incorrect ones.

To get better results it is of course possible to combine several approaches.
Therefore two main suggestions are submitted: hybrid and composite matcher. A
hybrid matcher just integrates a few defined strategies and executes them in a fixed
order. Composite matcher join the results of different approaches and allow to
change them or the executing. At the end the values have to be summarized to get
just one similarity value for a pair of entities.

Beside all these techniques, learning methods can also be applied. Bayes learn-
ing, neural networks and decision trees are machine learning approaches which can
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be used to match ontologies. Differently to other techniques, learning methods re-
quire sample data to learn from. If no data is available it is not possible to create
alignments with learning methods.

Finally a matcher can compute the correspondences either fully automatically
or with user interaction to take decisions. Fully automatic matchers usually do
not provide such good results as matchers with user interaction because humans
can delete incorrect correspondences just by regarding suggestions. Having a large
number of techniques allows the best matcher to be chosen individually for two
given ontologies. If a variety may be best in one case, in another this might not be
the same. Every strategy has advantages and disadvantages and one cannot select
the best approach without considering the ontologies.

There are a lot of strategies but ordinarily only equivalent relations just between
two entities are realized. Complex correspondences are not at present considered
and established matching systems rarely support them.

1.2 Problem Statement

After summarizing ontology matching in general and the existing techniques in
the previous section, disadvantages and issues of these strategies are explained in
this section. The need for generating complex alignments becomes reasonable if
ontologies contain complex correspondences which can be found by humans but
not by matching systems.

Generating complex correspondences is useful because everyone can create an
ontology in their own way. Different variations can arise for several reasons which
are not mandatorily avoidable. Three fundamental reasons for heterogeneity are
the target goal, usage of an ontology and also the background knowledge about
the domain. These problems cannot be avoided and even if all three issues could
be resolved, the ontologies are naturally not exactly the same. Additionally other
causes, which are described further, raise heterogeneity. The following classifica-
tion is based on the heterogeneity types in the ontology matching book [6]. Types
of heterogeneity are:

Syntactic heterogeneity An essential difference between ontologies can be at the
syntactical level. If they are expressed in various ontology languages they
are not syntactically the same and it is often not possible to compare them
without converting one ontology into another language.
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Terminological heterogeneity Every object can have names in different languages
or it can also be a synonym, having different names for the same meaning.
In this case, a comparison cannot be executed without additional information
such as a dictionary or thesaurus.

Conceptual heterogeneity The conceptual heterogeneity basically describes the
problem of modeling the same issue in arbitrary ways although there are no
syntactical or terminological problems. To get a more precise concept, a
separation into three parts can be made.

Difference in coverage Gap between describing different issues, e.g. de-
scribing car and animal.

Difference in granularity The same parts are explained but the level of de-
tails does not agree. For example one can describe the world on a very
low level and define every atom or one can characterize humans, ani-
mals and landscape on a very high level. Both characterize the same
world but the descriptions are not comparable.

Difference in perspective Although coverage and granularity are similar,
a problem can occur because of looking at the domain from different
perspectives. Everyone has its own perspective of a given circumstance
or object, e.g. some specialist on computer science has a technical view
of a computer different from a non-expert.

Semiotic heterogeneity Interpreting an entity by humans can cause different in-
terpretations because humans often take the context into account. Consider-
ing this problem is not really feasible for a computer because it cannot detect
this heterogeneity.

Ordinarily not only one type of heterogeneity appears, rather several ones are in-
volved. Due to all the types and mingled occurrence, it is almost impossible to
avoid heterogeneities. Methods are needed to deal with heterogeneity instead of
trying to avoid it.
To illustrate varieties of ontology modeling, Figure 1.2 shows two very small on-
tologies. Both describe parts of a family or more general human beings and their
relations among each other. The first ontology, shortened O1 with namespace 1#,
consists of four classes: 1#Person, 1#Mother, 1#Father, 1#Child. 1#Person is the
superclass of the other three classes. The second ontology, shortened O2 with
namespace 2#, is composed of three classes 2#Human, 2#Female and 2#Male and
an object property called 2#hasParent with domain 2#Human and complex range
2#Female t 2#Male. By comparing the entity names without any dictionary or
other auxiliary information, no straight accordance can be found. With support of
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Figure 1.2: Two small ontologies describing humans.

a dictionary it is possible to find 1#Person ≡ 2#Human, 1#Mother and 1#Father
have something to do with 2#hasParent and also a coherence between 1#Mother
and 2#Female, 1#Father and 2#Male. A structure-level system might detect a con-
nection between 1#Mother, 1#Father and 1#Child as well as 2#Female and 2#Male
based on the class hierarchy. Some combined methods perhaps recognize a rela-
tion between 1#Mother and 2#Female and between 1#Father and 2#Male because
of the subclass structures and 1#Person being a synonym of 2#Human. No matcher
find a correspondence between 1#Mother and 2#hasParent with the special range
2#Female since complex types are not considered.

Having many different types of unavoidable heterogeneity and detecting that
connections can be made up of more than two entities, the need for complex cor-
respondences becomes evident. Therefore clear definitions are required to have
a foundation for further work. All following definitions (plain equivalence, plain
non-equivalence and complex correspondence) are built upon the definition of cor-
respondence given in Definition 2. Different from Q and R the confidence structure
D is not restricted any further.

Definition 4 A plain equivalence correspondence is a correspondence with R =
{=}, Q(O) the set of atomic classes and properties of ontology O.

Definition 5 A plain non-equivalence correspondence is a correspondence with
Q(O) the set of atomic classes and properties of ontology O and no restriction on
R.

Definition 6 A complex correspondence is a correspondence without any restric-
tion on R or Q.
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The plain equivalence correspondence is the most frequently used correspon-
dence. Afterwards a few matchers compute plain non-equivalence correspondences
but complex ones are hardly ever taken into account. Finding complex correspon-
dences is not really easy but feasible for humans rather than computers. To detect
complex types automatically is quite difficult but not impossible at all.

1.3 Related Work

After introducing ontology matching, existing techniques and determining the need
for complex correspondences, now related approaches and systems which try to
find complex correspondences, give a short review of the current situation.

In order to find complex correspondences some approaches have been con-
sidered. For example three out of all thirteen matchers which took part in the
OAEI 2008 [4] computed non-equivalence correspondences. Mostly plain non-
equivalence correspondences have been regarded, especially subsumptions. A sub-
sumption is a relation between two terms wherein a more general term subsumpts
a more specific term. For example an animal is a subsumption of a dog because
every dog is also an animal but not every animal has to be a dog.

The three matchers mentioned above identified subsumptions in different on-
tologies: AROMA [5] in the anatomy ontologies, TaxoMap [9] and Spider [21] in
the benchmark ontologies. To get an impression of the systems, their strategies are
briefly explained.
TaxoMap creates three types of relationships: equivalence, subclass and semanti-
cally relation where equivalence is the similarity of class labels, subclass is ade-
quate to subsumption and semantically stands for all other relations. Finding a sub-
class relationship is based on the hierarchic class structure. Equivalence relations
hold between two classes having linguistic similar labels. All other imaginable
links between classes deducible from the set of labels and subclasses are seman-
tically related relationships. Only classes, in particular their labels and subclass
relations, are considered and no properties or instances at all. Also correspon-
dences of more than two concepts, complex correspondences, are not taken into
account.
AROMA divides the matching process into three parts: pre processing, extraction
of rules and post processing. First a set with all relevant data is created for each
entity, then subsumptions are computed by using the associated rule model where
a rule just connects parts of the sets built in the first step. In the end, a final touch is
applied to get better results. Extracting subsumptions based on rules is a different
approach that is used by TaxoMap but also only concentrates on subsumptions and
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not on complex correspondences.
The last matcher generating plain non-equivalence correspondences is called Spi-
der. Spider not only focuses on subsumptions and wants to bring non-equivalent
mappings to the OAEI. To get good results it creates equivalent mappings by us-
ing CIDER [8] and non-equivalent by using Scarlet [20]. Selecting and exploring
online ontologies helps to find subsumptions, disjoint and named relations. More
precisely the relations are obtained by applying derivation rules on the ontologies.
The test results for the benchmark ontologies are not very expressive because the
OAEI alignments only contain subsumptions and no complex correspondences at
all. This resulted in a numerical value less than expected. However, Spider ex-
plicit wants to compute complex mappings and to distribute the need of complex
correspondences, different from all other matchers mentioned before.

Summarizing all three matching systems computed plain non-equivalence cor-
respondences on their own way but no one regarded complex correspondences just
as it has been defined above.

Another approach [23] is based on the inductive logic programming, ILP, and
attempts at creating alignments by using the learning theory. Not just this pa-
per is concerned with inductive logic programming and ontology matching, [18]
mentioned this topic before. These approaches, different from the three matching
systems above, take complex correspondences into account and not only plain or
non-plain equivalence correspondences. But here it is not possible to create com-
plex mappings without learning correspondences out of instances. Often ontolo-
gies, even the ontologies examined further, do not contain any instances. Hence the
learning theory cannot be applied and other strategies have to be adapted in order
to find complex correspondences in ontologies without instances.

Altogether by now there exists some matching systems generating
non-equivalence mappings and approaches based on the learning theory for com-
plex mappings. Yet if two ontologies without instances are given, complex corre-
spondences cannot be computed. The approach represented in this thesis should
rather be like the strategies given by the matching systems but also determine com-
plex correspondences. Similar to TaxoMap, the structure of the entities, not only
classes in this case, and their names should be regarded in order to find corre-
spondences. Except for the strategy, the correspondences should also be complex
ones like the inductive logic programming approach. Unlike AROMA, finding
correspondences is not based on the rule model and also no other ontologies are
examined like Spider, especially Scarlet, does. Different from the strategy using
the learning theory, instances are not required. As a result there is no existing ap-
proach by now which is able to find complex correspondences in the ontologies
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examined ongoing.

1.4 Outline and Contribution

Is it possible to detect complex correspondences with state of the art matching tech-
niques? This is the main research question which arised while considering existing
matching techniques used by matching systems. Different from other approaches
which deal with non-plain correspondences, individuals in the ontologies are not
required and this approach is not restricted to correspondences with only atomic
entities(plain non-equivalence correspondences). It focuses attention on finding
complex correspondences with simple techniques. Therefore the following contri-
butions are accomplished: In the beginning, patterns of complex correspondences
in state of the art test sets of the OAEI are detected. After selecting a few ones,
algorithms are developed and programmed to automatically find these correspon-
dences. Finally the algorithms are tested on different datasets and the results are
analyzed and evaluated.

Introduced the problem statement and ontology matching approaches, in Chap-
ter 2 the way of finding complex correspondences and the classification into several
types are described. In the first section, Section 2.1, detecting correspondences and
which ontologies have been taken into account is specified, in the second section,
Section 2.2, all found types are listed and a short example is given for a better un-
derstanding. Additionally a decision is taken which types are implemented later
and why. Chapter 3 contains the algorithms of the chosen types and also examples
to illustrate correspondences. Unqualified Restriction, Qualified Restriction, Value
Restriction and Property Chain are the sections and in every section exactly one
type is explained. The goal is to provide an impression of the types and how cor-
respondences of such kind can be found. Following Chapter 4 is divided into three
sections: Implementation, Settings and Results. In Section 4.1 a general view of
the implementation with all external used tools and furthermore the functionality is
given. Neither a detailed specification nor a complete analysis is provided because
of not setting the focus on the implementation. Section 4.2 contains all preferences
of the testing environment which have been declared to be able to reconstruct the
testing results in Section 4.3. All results of different tests are indicated and ex-
plained in Section 4.3. Finally in Chapter 5 a conclusion is drawn and an overview
what has to be done in the future to achieve all introduced ideas is given.



Chapter 2

Exploratory Study

In this chapter the approach of finding complex correspondences is explained fur-
ther. First the origin of the ideas is indicated and it is described how it is possible
to find such correspondences. Afterwards the data on which the examinations oc-
curred are listed. In the second part the types of correspondences which were pos-
sible for candidates are explained in detail. Not each candidate was implemented
later, just a few one which seemed to be best.

2.1 Approach

First of all complex correspondences had to be found. Some approaches already
exist, e.g. the examples presented in [23] and some discussions about correspon-
dences at the OAEI conference track 1. Existing strategies which are used by some
matching systems, like subsumptions, have been also considered. Additionally
a few fundamental considerations which occur while building ontologies, e.g. if
a class or a property is created or how general range and domain of a property
should be, influenced the retrieval of types. In several ontologies the defined types
have been searched manually. Another way than considering types and seeking
examples in the ontologies was not possible because defining types need first some
ideas and a lot of reflection afterwards. At first every ontology was opened in the
ontology editor Protege [13] to get an overview of the ontologies and to have a
better representation. To find correspondences every entity had to be checked as
to whether it is a possible candidate. An automatic way was not possible because
no implementation existed so far to find such complex types. The concrete ontolo-
gies which were observed: OAEI Conference: SIGKDD, CMT, EKAW, IASTED,

1http://keg.vse.cz/oaei/

12
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CONFOF 2 and OAEI Benchmark: 101, 301, 302, 303, 304 3 which are all written
in the ontology language OWL. In every OAEI Conference ontology the domain
conference is specified by classes and properties. Describing the domain confer-
ence seems to be suitable [24] because most persons dealing with ontologies are
academics and know this topic already. Therefore it is easier to understand the
complex correspondences mentioned further instead of examples in an unfamiliar
domain. The OAEI Benchmark ontologies attend the domain bibliography which is
also well-known by academics. Another reason for choosing these ontologies are
the existing and available alignments. For the conference set every combination
of ontologies is possible because for every pair of two ontologies an alignment is
available and such an alignment is used during the matching process. Only for each
combination with the ontology 101 an alignment was available for the benchmark
ontologies. Why an alignment with plain equivalence correspondences is required,
is described in Chapter 3. At the moment it is only useful to bear in mind that not
every combination of two ontologies has been regarded while browsing through the
ontologies. Otherwise some following explanations might not be comprehensible.

2.2 Types of Complex Correspondences

After determining the complex types they have to be written down formally and
explained more precisely. For that reason examples are shown and explained. In
the end a decision which types are implemented later is taken based on the occur-
rences and some other criteria.

In Figure 2.1 two different ontologies are illustrated. Both describe a confer-
ence because this domain seems to be reasonable for an academic reader. Rect-
angles represent classes, ellipses datatypes like string or date and arrows stand
for properties linking a class to another class (object property) or to a datatype
(datatype property).

Every type found in the exploration is listed below with a small example out
of Figure 2.1. Also a description with information about the reason for having dif-
ferences is given to understand why a certain type may occur. Additionally imag-
inable matching results of conventional matchers are given to get an impression
of their operating principles and findings. Whenever similarity between entities
is mentioned, a string similarity is meant although it is not specified any further.
For formal definitions assume two ontologies O1 and O2, class C1, object property
OP1, datatype propertyDP1 inO1 and class C2, object propertyOP2 and datatype

2http://nb.vse.cz/ svabo/oaei2008/
3http://oaei.ontologymatching.org/2008/benchmarks/
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Figure 2.1: Two example ontologies for illustrating the types of complex corre-
spondences
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properties DP2, DP2’ in O2. All correspondences are in first-order-logic because
they can be described in a simple way and first-order-logic is well-known not only
in a specific field. Description logic was not selected because of not being able to
express all complex types.
An equivalence between both parts of the correspondence was chosen although
there are some existential quantifiers, e.g.
∀x (2#Researcher(x)↔ ∃y (1#researchedBy(y,x)) ∧ 1#Person(x))
and this might be confusing. The implication from the complex term to the simple
term is the easy one and claims if anything exists which is researched by a person
the person has to be a researcher. On the other hand, a researcher in this case is a
person and has done some research otherwise one would not be a researcher. As
soon as the left side is available, the variables on the right side are defined auto-
matically.

Subsumption
Explanation A subsumption is a generalization of one term to another and

can arise if in one ontology a more general concept is needed that is
different from another ontology. They can be found by using dictionar-
ies/thesauri or sometimes by comparing substrings. It is not a complex
correspondence, but a plain non-equivalence one.

Formally ∀x (C2(x)→ C1(x))
C1 is a subsumption of C2 or C1 is a generalization of C2.

Example ∀x (2#Author(x)→ 1#Person(x))
Every author is also a person but not every person is necessarily an
author. If an equivalence between 1#Person and 2#Human exists, the
subsumption found above is trivial because of deducing a subclass re-
lation between 1#Person and 2#Author.

Matcher results Some matchers already compute subsumptions but most
ones do not find the correspondence or make a plain equivalent corre-
spondence out of it instead of a subsumption.

Property Chain
Explanation While creating an ontology a creator must decide whether to

model an entity as a class or as a property. Instead of a property which
relates two classes or a class and a datatype, one can also construct a
new class and connect it to other classes.

Formally ∀x (DP1(x,datatype)↔ ∃y (OP2(x,y) ∧ DP2(y,datatype)))
In the end both expressions relate a class to a datatype and describe the
same issue but in a different way.
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Example ∀x (1#author(x,string)↔∃y (2#hasAuthor(x,y)∧ 2#name(y,string)))
The datatype property 1#author maps a 1#Paper to the name of its au-
thor as a string. Instead 2#hasAuthor relates a 2#Paper to a 2#Author.
Every 2#Author has a name given by the datatype property 2#name. If
a 2#Author exists which is the author of a 2#Paper and has a name, it
is equivalent to the property 1#author.

Matcher results Conventional matching systems only concentrate on cor-
respondences between two entities. Such a matcher perhaps finds sim-
ilarities between the properties but not a correspondence between one
property and a composition of two properties.

Range Restriction Often complex ranges are used and just a subclass of the range
might lead to a correspondence. There are several different types which are
described further. All these types are not supported by any matcher. Every
following type is based on the term ∀x (1#A(x) ↔ 2#B(x) ∃y (2#R(x,y) ∧
2#C(y))) where A,B,C are classes and R is a property. Not every class of the
second ontology has to be restricted but at least one of them per type.

Unqualified Restriction
Explanation Classes can often also be modeled as object properties.

Where to create a class or a property is in the eye of the builder
and cannot be standardized. There can also be differences in on-
tologies if the names of classes or properties are the same but have
another meaning, e.g. a seller can be a person or a whole com-
pany. If a class C1 in O1 describes a seller as a person and an
object property OP2 in O2 explains that someone bought some-
thing from a seller, the seller can be a person or a company. Corre-
spondences of type Unqualified Restriction exactly deal with this
problem, where a class is namely similar to an object property with
a complex range. Additionally the class is namely similar to the
object property. To get this type out of the basic term described
above, the variables x and y are changed in the property to get
R(y,x) instead of R(x,y) and B(y) is left off. This type is called Un-
qualified Restriction because the restricted range is not qualified
further by an existential quantifier.

Formally ∀x (C1(x)↔ ∃y (OP2(y,x) ∧ R’(x)))
whereR’ is a subclass of the range of OP2.

Example ∀x (2#Researcher(x) ↔ ∃y (1#researchedBy(y,x) ∧ 1#Per-
son(x)))
In O2 a 2#Topic can be 2#researchedBy a 2#Person or a whole
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2#Company. O1 contains a class called 2#Researcher which is
equivalent to the construct out of O2 if a 2#Topic exists.

Matcher results Similarity between 2#Researcher and the property
1#researchedBy or maybe a subsumption from 1#Person to 2#Re-
searcher might be found by an existing matcher.

Qualified Restriction
Explanation This type is very similar to Unqualified Restriction but

instead of holding a string similarity between a class and an ob-
ject property, the similarity here is between the class and the range
of an object property. To get this type out of the basic term only
B(x) has to be deleted. The name Qualified Restriction is cho-
sen because of qualifying the restricted range additionally by an
existential quantifier different from Unqualified Restriction.

Formally ∀x (C1(x)↔ ∃y (OP2(x,y) ∧ R’(y)))
where R’ is a subclass of the range of OP2. In distinction from
Unqualified Restriction where in the term R’(x) the variable x
is qualified by an universal quantifier in R’(y) the variable y is
qualified by an existential quantifier.

Example ∀x (1#PositiveRewiedPaper(x)↔ ∃y (2#hasEvaluation(x,y)
∧ 2#Positive(y)))
A 1#PostiveReviewedPaper is equivalent to a 2#Paper which has
a positive Evaluation. Range of 2#hasEvaluation is 2#Evaluation
and not just 2#Positive. Without determining this fact, a correct
correspondence cannot be found.

Matcher results Similarity between the class 1#PositiveRewiedPaper
and the subclass of the range 2#Positive.

Value Restriction
Explanation Sometimes a class can be expressed as a datatype prop-

erty with a finite datatype, e.g. boolean, or a set of values as range.
This type is a special case of Qualified Restriction with a datatype
property instead of a object property. It is called Value Restriction
because of restricting a datatype range on a particular value.

Formally ∀x (C1(x)↔ ∃y (DP2(x,y) ∧ y=value))
The name of the class and the name of the property are mostly
similar, especially if the value should declare that a certain case is
present. If a datatype range is not finite one normally cannot draw
any conclusion because of not knowing which value has a special
meaning.
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Example ∀x (1#submittedPaper(x)↔∃y (2#submission(x,y)∧ y=true))
A 1#submittedPaper is equivalent to 2#submission of a 2#Paper if
the datatype value is true.

Matcher results Existing matching systems may find a similarity be-
tween 1#submittedPaper and 2#submission but this is not a correct
correspondence because of comparing a class to a property which
is not indeed sensible in this case.

Domain Restriction
Explanation Beside ranges domains also can be restricted.

Formally ∀x,y (DP1(x,y)↔DP2(x,y) ∧ D’(x)) or
∀x,y (OP1(x,y)↔OP2(x,y) ∧ D’(x)) or
∀x (C1(x)↔ ∀y (OP2(y,x) ∧ D’(y)))
where D’ is a subclass of the domain. Only if the domain is restricted
the correspondence holds.

Example ∀x,y (1#EndOfConference(x,y)↔ 2#endsOn(x,y)∧ 2#Conference(x))
The 1#endOfConference is the same as 2#Conference 2#endsOn a spe-
cial date. The 2#endsOn property has the domain 2#Event which is a
superclass of 2#Conference. Without restricting the domain a corre-
spondence is not given.

Matcher results A matcher might find a correspondence between both prop-
erties/class and range but without considering the domains.

Compound Property
Explanation Some properties can be divided into two properties which are

compounded similarly to the result of one property. For example a
telephone number can be divided into the dialing code and the number.
Thus one telephone number property or two properties from the dialing
code and number can be created.

Formally ∀x,y (DP1(x,y) ↔ ∃z,z’ (DP2 (x,z) ∧ DP2’(x,z’) ∧ f(z, z′) =
y))
where f is a in general an arbitrary function but in this case f concate-
nates z and z′. For example f(”a”, ”b”) = ”ab” is the concatenation
of ”a” and ”b”.

Example ∀x,y (2#name(x,y)↔ ∃z,z’ (1#firstName(x,z) ∧ 1#lastName(x,z’)
∧ f (1#firstName(x,z), 1#lastName(x,z’)) = 2#name(x,y)))
The name of a person normally consists of the first name and the last
name. The first and last name of a human is compounded the same as
a name of a person because person is a synonym for human.



CHAPTER 2. EXPLORATORY STUDY 19

Matcher results If only mapping one-to-one a matcher may find two corre-
spondences or maybe subsumptions but not a connection between three
properties.

Inverse Property
Explanation Many properties can be reversed by changing domain and range.

There are some key words like by or of which can indicate this type.

Formally ∀x,y (OP1(x,y)↔OP2(y,x))
If domain and range of one property are reversed, a correspondence
can be found.

Example ∀x,y (2#heldIn(x,y)↔ 1#locationOf(y,x))
2#heldIn has the domain 2#Conference and the range 2#City, 1#loca-
tionOf the domain 1#Town and the range 1#Conference. 1#Town and
2#City can be seen as synonyms and reversing domain and range of
one property generates a correspondence.

Matcher results Matcher analyzing the structure usually recognize a differ-
ence between ranges and domains. Also element-level matchers cannot
find a correspondence since the names are not always similar.

After identifying and discovering the correspondences some types have to be cho-
sen. Implementing every type was not possible due to time restriction. To come
to a decision Table 2.1 with the numbers of the found correspondences per type
has been created. The displayed numbers are lower bounds because there might be
correspondences which have not been found. Not every complex type has been
searched in the benchmark ontologies only those types where no example was
found in the conference set. Therefore Table 2.1 contains ”-” whenever a type
of complex correspondence has not been considered in these ontologies. Having
this first overview advantages and disadvantages of every type have to be consid-
ered. Then every type is listed with an explanation whether it has been taken or
not.

Subsumption Some matchers already compute subsumptions and it is quite easy
to find them with a dictionary. The implementation is also not very differ-
ent if a lexical database like Wordnet [7] is integrated because the system
can return all generalizations of one word. Moreover it is only a plain non-
equivalence type and not a complex one. Although most correspondences
are of this type, it was not attractive enough to implement and therefore not
selected.
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Type Benchmark Conference Total

Subsumption - 13 13

Property chain 9 0 9

Domain restriction - 4 4

Compound property 4 0 4

Inverse property - 5 5

Value Restriction - 2 2

Unqualified Restriction - 1 1

Qualified Restriction - 2 2

Range restriction total - 5 5

Table 2.1: Number of found correspondences per type

Property chain Correspondences of type Property Chain are quite often avail-
able in the benchmark ontologies. It is understandable that it is possible to
create one property or two properties expressing the same in the end. Not
only limited to some ontologies this type of correspondence is conceivable.
Implementing the type requires to create an algorithm which is universally
usable for every pair of ontologies. Beside name comparisons of particular
entities, which belongs to the element-level, structure-level parts must also
be integrated to find this correspondences. Due to the unrestrictedness on
special ontologies and the need for different techniques at the computation,
this type of correspondences was selected for implementation.

Range restriction Not every property is only used in one way, with a complex
range it can be used in different ways. Restricting the range of a property can
sometimes lead to an equivalence to another property or a class. Altogether
the range restrictions can be found a few times in the given ontologies.

Unqualified Restriction Having a property with complex range and a class
similar to the property can lead to a correspondence called Unqualified
Restriction. The property can be used to express different issues and
only if the range is restricted to one special class is a correspondence
between the class and the property with its range given. Modeling an
entity as a property or as a class is not predetermined and everybody
can choose which version to use. Also if only one example has been
found in the ontologies it is a fundamental distinction and has been
picked out to be implemented.

Qualified Restriction Here the type also relates to the problem where to
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create a class and where to pick a property. It is quite similar to the
type Unqualified Restriction but not similar enough to use the same
algorithm. Two examples are given in the ontologies but there might
be more in other ontologies. Because of its advantages, especially the
generality of this type not restricted on some ontologies rather having
differences in modeling and the number of occurrence in the examined
ontologies, this type was also selected.

Value Restriction A range restriction based on a datatype property and a
special value of its range. In general one can create a class or explain
the same circumstance with a datatype property and fixed value. Only
two examples have been found in the ontologies but the correspondence
seems to describe a general difference in modeling which occurs as
often as other types but can be important. Due to the observations
above this type appears to be a good choice.

Implementing this type, especially the three subtypes, requires element-level
and also structure-level techniques which require some deliberations and the
quantity of strategies is less limited. The type Range Restriction has been
selected because of being quite general and promising.

Domain restriction Some properties/classes have a more general meaning than
other ones even if their names in the ontologies are the same. If the ranges of
two properties are equal they might differ in their domain. Also a class can
be equivalent to a property with a special domain. In all examined ontologies
there have only been a few examples and the restriction on the range which
is contrary to the Domain Restriction seemed to be more promising and in-
teresting. Especially no need for a distinction between datatype and object
property limits the variety of correspondences. Because of implementing the
Range Restriction type which is similar to the Domain Restriction type it has
not been chosen.

Compound property Datatype properties, especially with range string can some-
times be divided into more than one datatype property. The compound values
are at the end the same as the value of one property. There are several ex-
amples but they did not seem to be very universal because of concentrating
on persons with their name and address. Other cases are difficult to imag-
ine because other strings can be rarely separated into substrings which really
make sense. Due to this fact the type Compound Property was not selected
for implementation.

Inverse property In an ontology a property generally can connect one class to
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another or vice versa because a property is not a symmetric relation. A con-
sistent way of modeling a property with its domain and range does not exist.
Finding inverse properties is not just difficult because if two properties are
namely similar and maybe one property contains a key word like by or of,
only a comparison between exchanged domain and range of one property
and domain and range of the other property is enough to determine a cor-
respondence. Additionally in the examined ontologies often one ontology
contains the ordinary property and also its inverse. In such a case finding
a correspondence between the inverse property and another property can al-
ready be derived from the plain equivalence correspondences. Besides it is
also only a plain non-equivalence type like subsumption. Although some
examples have been found, this type was not as interesting as other types
because the algorithm is not very difficult and many correspondences may
be trivial.

To sum up the choice of the types, Property Chain and Range Restriction are fur-
ther implemented because of assuming the best success, having a few expressive
examples, being very general and not restricted to only some cases or ontologies.
Implementing four algorithms also appears appropriate for this thesis.



Chapter 3

Algorithms

Introduced ontology matching, existing strategies and some problems, the need
for complex alignments became comprehensible. After finding some complex cor-
respondences, several types were presented and a few of them selected. In this
chapter the implemented algorithms of the chosen types are explained. Further-
more a detailed example to every algorithm illustrates the theoretical description.
All algorithms are implemented and the testing results can be found in Chapter 4.

Development and implementation of the algorithms are based on the corre-
spondences found in all ontologies. The goal was to write an algorithm which
detects at least these examples but should not contain too ridic constraints so that
also other correspondences can be discovered. Additionally the algorithms should
be as simple as possible and not unnecessarily difficult. Every algorithm includes
several loops to iterate through elements and conditional statements to select the
correct entities. After identifying all essential components, the order of the loops
and statements had to be defined. Changing the order may influence intermediate
results and also the runtime. To get the best performance an order has been chosen
which achieves the least runtime.

Moreover the algorithms have two ontologies and one alignment as input.
Building a bridge between the two ontologies is achieved by the conventional align-
ment and with its help it is for example possible to get all superclasses of a class out
of both ontologies and not only out of the ontology in which the class is contained.
A more precise explanation of the functionality is given further when describing
the logical notions.

For the sake of simplicity only the names of the entities and namespaces like 1#

23
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and 2# are used instead of whole URIs with the complete namespace. Shortened
also the abbreviations O1, O2 are defined rather than Ontology 1 and Ontology
2. Also some other abbreviations are used: C for class, P for property and E for
entity. Certain notions are used to compute the correspondences:

logical notions The logical notions are defined in the ontology language OWL in
which all considered ontologies are expressed. When defining an ontology
these concepts were already mentioned.

subClassOf The subClassOf relation is adequate with the specialization
where one class is more specific than another. It is the counterpart of
superClassOf which is described later on. In the algorithms a method
called subClassOf(C, O) is used to compute the subClasses of a class
C in ontology O.

superClassOf If one class is a generalization of another class. Two meth-
ods are used in the algorithms based on the superclass concept. First
one is superClassOf(C, O) and returns all classes of O which are a su-
perclass of C. The second on is isInAlignedSuperclasses(C, O1, O2,
A) which additionally considers the reference alignment A to find all
superclasses of C not only of O1 but also of O2. For a better under-
standing, in Figure 3.1 an example is illustrated. On the left side are
the classes ofO1, on the right the classes ofO2. In the middle the refer-
ence alignment is located. A plain equivalent correspondence between
1#C3 and 2#C1 can be found in the alignment. Imagine all superclasses
of 2#C1 in both ontologies are requested. Only considering O2 do not
deliver any results because inO2 exists no superclass of 2#C1, only the
subclasses 2#C2 and 2#C3. Having the correspondence makes it pos-
sible to check the superclasses in O2 by regarding all superclasses of
1#C3. In this case 1#C1 has a superclass called 1#C1. Now 1#C1 can
be declared as a superclass of 2#C1 although they are not in the same
ontology. Determining subclasses out of both ontologies is of course
analog because of being the counterpart of superclasses.

domain Domain of a property is a relation to indicate which classes are
permitted to be part of this property as domain. In the algorithms the
method domain(P ,O) is used to get the domain of a property P which
is contained in ontology O. Beside the classes defined as domain, also
every subclass is returned. For example if in ontology O a property P
has the defined domain C1, whereby C1 has the subclasses C2 and C3.
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Figure 3.1: Finding subclasses in two ontologies with the help of a reference align-
ment

Now if domain(P , O) is called, this method returns C1, C2 and C3 as
the domain of P .

range Range is the opposite of domain and defines which classes can be
in the range of a property if an object property is available or which
datatypes in the case of a datatype property. Calling range(P , O) re-
turns on one hand all classes ofO defined as range and their subclasses
as with the domain if P is an object property and on the other hand the
defined datatype in P is a datatype property.

disjoint Two classes are disjoint if their intersection is empty. In the algo-
rithms it is indicated by C1 v ¬ C2 if C1 is disjoint with C2.

equivalent Having a class C1 equivalent to another class C2 means that C1
is subclass of C2 and simultaneously C2 is subclass of C1. In general
one could say if two classes are equivalent, they claim the same issue
otherwise they are not. Equivalence is not immediately used in the
algorithms, but its counterpart. Having two classes C1 and C2 the non-
equivalence is indicated by C1 ! = C2.

syntactical notions Beside the logical notions, several other characteristics, not
defined in OWL, are needed in order to find complex correspondences.

similar Similar entities have a high similarity value measured against some
similarity criteria. For computing these values a conventional matcher



CHAPTER 3. ALGORITHMS 26

can be used as long as it is mostly based on a linguistic approach, like
[11] or [10]. In this case a matcher computing the values based on
the Levenshtein measure [15], which computes how many operations
(insert, delete, modify) are needed to get one word out of the other, has
been applied. Having values for every pair of entities, a decision which
entities are similar has to be taken. Therefore a particular variable for
every similar relation acts as threshold and if a value is greater than
this threshold, the corresponding entities are selected as being similar.
A method isSimilar(E1, E2) is used to determine the similarity value of
E1 and E2. It returns true if the value is higher than a defined threshold
and false otherwise. The thresholds do not appear in the algorithms
because they can be modified.

head noun A name can be separated into two parts: head noun and not
head noun. The head noun is the main word of a name and can be
find by applying some rules. If the name only contains one word, the
whole name is the head noun. Having a name compound of at least
two words, some keywords exist, for example of or by, which indi-
cates that the head noun is directly before the keyword, e.g. author of
paper where author is the head noun. Otherwise if the names consists
of more than one word and additionally no keyword is contained, the
last word of the name is most often the head noun, e.g. paper author
where author is the head noun. Now after defining the set of rules, the
head noun of a name can be determined easily. Calling the method
nameWithoutHeadNoun(E) returns the name of the entity E without
containing the head noun.

first part Aside from dividing a name into head noun and not head noun,
a name can also be partitioned into first part and other part. First part
is just the first word of a name and other part are all remaining words
except for the first one. If the name contains only of one word, the
other part is empty. In the algorithms the method firstPartOfName(E)
returns a string with the first word of the name of the given E .

reduced name A reduced name is a name where a certain part is deleted
in contrast to the whole name. In this case the word of the name is
deleted which has the highest similarity value with a name of a class
in the other ontology. Reducing a name is implemented by the method
reducedName(E , O) and returns the reduced name of E where E be-
longs to ontology O.

compatible Two datatypes are compatible if one datatype can be trans-
lated into the other and vice versa. String is compatible to every other
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datatype but for example date is not compatible to boolean. The method
isCompatible(R1,R2) checks if the rangeR1 from a datatype property
is compatible to a rangeR2 from another datatype property.

Beside the methods mentioned above, a few more are used in the algorithms:
classes(O), objectProperties(O) and datatypeProperties(O). They are used to de-
liver data and just return the corresponding set of entities from an ontologyO. Hav-
ing described all notions and required methods, the algorithms can be explained
afterwards.

Beside the algorithms, examples which can be found in the ontologies should
help to understand the technical description. All four Figures 3.2, 3.3, 3.4, 3.5
consist of classes, recognized by rectangles and properties recognized by ellipsis.
Characteristics of entities like range, similar, not equal and so on, are represented
by labeled lines or labeled arrows if the direction is important. Moreover datatypes
are displayed as hashes to indicate a datatype property. Additionally all other ap-
pearing parts like head noun/not head noun or any other division of a name into
several words are indicated by hexagons. Every part of a correspondence is bold
framed to quickly detect the relevant concepts. For reasons of simplification all
names of entities are noted without their namespace, but they are unique anyway.

3.1 Unqualified Restriction

Unqualified Restriction describes a complex correspondence between a class and
an object property with restricted range. A characteristic feature to distinguish
this type from especially the other range restrictions is the similarity of class and
property. The following explanations refer to Algorithm 1.

First a class 1#c of O1 and an object property 2#p of O2 must be given to
check over if all other requirements for a correspondence of type Unqualified Re-
striction are fulfilled. Therefore the algorithm iterates through all classes of O1

and all object properties of O2. Further the range 2#r and domain 2#d of 2#p
are determined. Also the name of 1#c has to be similar to the name of 2#p. On
the basis of the similarity, entities describing the same issue should be identified.
A threshold, which can be modified, defines how similar the names must be to get
a satisfaction. Moreover every superclass 2#s of 1#c is regarded. This is only
possible if an alignment of O1 and O2 is available, because otherwise only the su-
perclasses ofO1 can be determined. The last condition is the conjunction of several
requirements. Only if all three statements are true, can a correspondence be found.
First 2#s has to be a subclass of 2#r to ensure that 2#p maps 2#d onto a more
general concept than 1#c. Otherwise the correspondence is not very meaningful
because 1#c and 2#p with restricted range 2#s should describe the same issue.
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Excepting the identity of 1#c and 2#s avoid unnecessary correspondences, e.g.
finding Organizer(y) = organizedBy(x,y) Organizator(y) is of little avail if Orga-
nizator has the same meaning in both ontologies. Having the domain 2#d being
disjoint with 2#s guarantees the relation between two widely different classes rep-
resented by 2#p. Else domain and range could be the same or connect related
classes which is unintended. If all these conditions are fulfilled a correspondence
between 1#c, 2#p and 2#s is found. In first-order-logic the correspondence looks
like 1#c(x)↔ ∃y (2#p(y,x) ∧ 2#s)).

To illustrate the algorithm an example is shown in Figure 3.2. Organizator on
the left side is the class out of O1 which is similar to the object property organ-
ised by ofO2. Superclass of Organizator is Person, this is figured out by regarding
the alignment. Further the defined range of organised by is Organisation ∪ Person.
For a union of classes every included class is also a subclass of the union. That is
why Person is in the set of ranges and also the superclass as already mentioned.
Continuing the algorithm, class and range, here Organizator and Person are not
equivalent. To reach a complex correspondence of type Unqualified Restriction
domain of the property and the superclass must be disjoint. In the figure one can
see the disjointness of Event, which is the domain of organised by, with Organi-
zator. All requirements are now satisfied and a correspondence is found. Formally
the correspondence is: ∀x (Organizator(x)↔ ∃y (organised by(y,x) ∧ Person(x))).

Algorithm 1 Find Unqualified Restriction correspondences
UNQUALIFIED RESTRICTION(O1, O2, A)

1: for 1#c in CLASSES(O1) do
2: for 2#p in OBJECTPROPERTIES(O2) do
3: 2#r ← RANGE(2#p, O2)
4: 2#d← DOMAIN(2#p, O2)
5: if ISSIMILAR(1#c, 2#p) then
6: for 2#s in ALIGNEDSUPERCLASSES(1#c, O1, O2, A) do
7: if 2#s v 2#r and 1#c != 2#r and 2#d v ¬2#s then
8: � create ∀x (1#c(x)↔ ∃y (2#p(y,x) ∧ 2#s))
9: end if

10: end for
11: end if
12: end for
13: end for
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Figure 3.2: Correspondence of type Unqualified Restriction between Organizator
and organised by with restricted range Person. The class Organizator can be found
in the OAEI conference ontology sigkdd, organised by and its range in the OAEI
conference ekaw.
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3.2 Qualified Restriction

A class, an object property and additionally one part of the class name being sim-
ilar to the restricted range, indicates a complex correspondence called Qualified
Restriction. Algorithm 2 describes the process of finding correspondences of this
type. First the classes of O1 and O2 are regarded. Having two fixed classes 1#c
and 2#c the object properties of O1 are examined further. 1#r is assigned to the
range of 1#p, 1#d to the domain of 1#p. Only if the name without head noun of
1#c and 2#c are similar, does the algorithm continue with these classes. After-
wards the superclasses of 1#c are computed, this time just the superclasses of O1

because here the other ones are not needed. If the current superclass 1#s is similar
to the name of 1#p another necessary condition is fulfilled. Moreover a superclass
1#s′ of 2#c is required and can be charged by considering the alignment. Now
the entities have to satisfy three more conditions. 1#s has to be a subclass of 1#r,
this guarantees that 1#c can be applied as range. Additionally both classes 1#c
and 2#c should not be the same to avoid impractical correspondences. Further
1#s′ has to be a subclass of 1#d to be able to deploy 2#c as range for 1#p. Once
all these requirements are fullfilled, a correspondence of type Qualified Restriction
has been found and can be expressed as following: ∀x (2#c(x)↔ ∃y (1#p(x,y) ∧
1#c(y))).

Figure 3.3 shows an example of a Qualified Restriction. On the left side the
class Accepted Paper can be split up into Accepted and Paper, where Paper is the
head noun of the expression and Accepted not the head noun. Accepted is similar
to Acceptance, but Accepted Paper is not equivalent to Acceptance. The object
property hasDecision accomplishes all conditions required by the algorithm: Ac-
ceptance has a superclass called Decision which is also the range of hasDecision,
additionally Decision and hasDecision are similar. Moreover the domain of has-
Decision is Paper and Paper on the other hand is a superclass of Accepted Paper
because in the ontologies Accepted Paper is a subclass of Paper in its own ontology
and Paper ∈O1 ≡ Paper ∈O2 given in the alignment. In the end a correspondence
between Accepted Paper and hasDecision with Acceptance is found. Formally it
can be expressed that way: ∀x (Accepted Paper(x)↔ ∃y (hasDecision(x,y) ∧ Ac-
ceptance(y))).

3.3 Value Restriction

The existence of a datatype property with a finite range is characteristic for this type
of complex correspondence. Finding such correspondences is described in Algo-
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Algorithm 2 Find Qualified Restriction correspondences
QUALIFIED RESTRICTION(O1, O2, A)

1: for 1#c in CLASSES(O1) do
2: for 2#c in CLASSES(O2) do
3: for 1#p in OBJECTPROPERTIES(O1) do
4: 1#r ← RANGE(1#p, O1)
5: 1#d← DOMAIN(1#p, O1)
6: if ISSIMILAR(NAMEWITHOUTHEADNOUN(1#c), 2#c) then
7: for 1#s in SUPERCLASSES(1#c, O1) do
8: if ISSIMILAR(1#s, 1#p) then
9: for 1#s′ in ALIGNEDSUPERCLASSES(2#c, O1, O2, A) do

10: if 1#s v 1#r and 1#c != 2#c and 2#s′ v 1#d then
11: � create ∀x (2#c(x)↔ ∃y (1#p(x,y) ∧ 1#c(y)))
12: end if
13: end for
14: end if
15: end for
16: end if
17: end for
18: end for
19: end for
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Figure 3.3: Correspondence of type Qualified Restriction between Accepted Paper
and hasDecision with range Acceptance. Accepted Paper can be found in OAEI
conference ekaw, hasDecision and Acceptance in OAEI conference cmt.
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rithm 3. First the algorithm iterates through all datatype properties of O1. Further
all classes of O2 are examined. Given 1#p its domain 1#d and range 1#r is de-
termined. Afterwards it is checked whether 1#p and the reduced name of 2#c are
similar to each other. Continuing, the superclasses of 2#c are assigned, especially
the superclasses of O1 which have been deduced from the alignment. Moreover
1#s has to be a subclass of the domain 1#d and also the range 1#r should be
boolean. In general every finite range is imaginable but at the moment only the
boolean range is implemented because it is the only one used within the example
ontologies. If a non-boolean range is available the algorithm has to be expanded
to be able to decide which value is adequate for which class. The last condition
checks the similarity of 1#p and the first part of the reduced name of 2#c. Having
2#c where the first part of the name is similar to 1#p, a correspondence is found
with the value true, else with value false. Hence the similarity of 2#c and 1#p just
indicate which value is determined to be part of the correspondence. The found
correspondence is: ∀x (2#c(x)↔ ∃y (1#p(x,y) ∧ y=’true’)) or ∀x (2#c(x)↔ ∃y
(1#p(x,y).

For getting a better understanding in Figure 3.4 an example is illustrated. On
the left side the class Early-Registered Participant out of O1 can be split up into
”Early-Registered” and ”Participant”. For ”Participant” a class in O2 exists par-
ticular Participant which is similar to it. Early-Registered is therefore the reduced
class name because it is not the part having the most similar class in O2. Ad-
ditionally Early-Registered is similar to the property earlyRegistration. A super-
class of Early-Registered Participant is Participant in O2 which is also the do-
main of the property as it is required. Furthermore the range of the property is
boolean and the first part of the class, here Early, is similar to the property name.
Now a complex correspondence of type Value Restriction is found: ∀x (Early-
Registered Participant(x)↔ ∃y earlyRegistration(x,y) ∧ y=’true’)).

3.4 Property chain

Two properties which can be applied successively might express the same as one
property. Algorithm 4 describes the way of finding such correspondences. It is
restricted to the datatype property for the isolated property because no other ex-
amples are contained in the ontologies. At the beginning a datatype property 1#p
out of O1 and an object property 2#p of O2 are given by iterating through all cor-
responding properties. Further the domains and ranges are computed, 1#r range
and 1#d domain of 1#p, 2#r range and 2#d domain of 2#p. Further the names
of 1#p and 2#p should be similar and also 2#d a subclass of 1#d. The last con-



CHAPTER 3. ALGORITHMS 34

Algorithm 3 Find Value Restriction correspondences
VALUE RESTRICTION(O1, O2, A)

1: for 1#p in DATATYPEPROPERTIES(O1) do
2: for 2#c in CLASSES(O2) do
3: 1#r ← RANGE(1#p, O1)
4: 1#d← DOMAIN(1#p, O1)
5: if ISSIMILAR(1#p, REDUCEDNAME(2#c, O2)) then
6: for 1#s in ALIGNEDSUPERCLASSES(2#c, O1, O2, A) do
7: if 1#s v 1#d and 1#r = ’boolean’ then
8: if ISSIMILAR(FIRSTPARTOFNAME(REDUCEDNAME(2#c)), 1#p)

then
9: � create ∀x (2#c(x)↔ ∃y (1#p(x,y) ∧ y=’true’))

10: else
11: � create ∀x (2#c(x)↔ ∃y (1#p(x,y) ∧ y=’false’))
12: end if
13: end if
14: end for
15: end if
16: end for
17: end for
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Figure 3.4: Correspondence of type Value Restriction between Early-
Registered Participant and earlyRegistration with value true. Early-
Registered Participant can be found in OAEI conference ekaw, earlyRegistration
in OAEI conference confOf.
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dition can be checked by inspecting the alignment. Now the datatype properties
of O2 are examined. The range 2#r of the 2#p has to be a superclass of the do-
main 2#d′ of the 2#p′ otherwise the properties cannot be successively applied.
Moreover the ranges 1#r and 2#r′ have to be compatible, this means one datatype
can be expressed in the other datatype. For example string is compatible to every
other datatype because everything can be expressed as a string. On the other hand
boolean and date are not compatible because a boolean can never be transformed
into a date. If two datatype properties 1#p and 2#p′ are given which satisfies
the requirements above, it has to be decided whether the two properties executed
one after another really express the same as the other property. This can be ac-
complished by inspecting the name of 2#p′ contained in the chain. If the name
is ”name” or contains the name of 1#p , a correspondence is found. Taking all
datatype properties called ”name” may cause some wrong results, but often really
the name of an object is meant, e.g. a datatype property called author normally
describes the name of the author although the word ”name” is not contained in the
name of the property.

Illustrating the algorithm, Figure 3.5 shows an example found in the ontolo-
gies examined. On the left side the separated property can be seen, on the right the
property chain. The properties hasJournal, datatype property, and journal, object
property, are namely very similar. Also the domain of hasJournal which is Entry
is a superclass of the domain Article from journal. Further the datatype property
name in O2 can be found and its domain Journal is simultaneously the range of
journal. Both datatype properties hasJournal and name has the range String and of
course String is compatible to String. Having the property name also automatically
fulfills the last requirement. In this case it is meaningful because hasJournal indi-
cated the name of the journal in which a certain entry is published. Applying the
property chain of journal and name also relates an entry, here especially article, to
the name of the journal in which it is published. Formally the correspondence can
be expressed as following: ∀x,y (hasJournal(x,y)↔∃z (journal(x,z) ∧ name(z,y))).
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Algorithm 4 Find Property Chain correspondences
PROPERTY CHAIN(O1, O2, A)

1: for 1#p in DATATYPEPROPERTIES(O1) do
2: for 2#p in OBJECTPROPERTIES(O2) do
3: 1#r ← RANGE(1#p, O1)
4: 1#d← DOMAIN(1#p, O1)
5: 2#d← DOMAIN(2#p, O2)
6: 2#r ← RANGE(2#p, O2)
7: if ISSIMILAR(1#p, 2#p) AND 2#d v1#d then
8: for 2#p′ in DATATYPEPROPERTIES(O2) do
9: 2#d′ ← DOMAIN(2#p′, O2)

10: 2#r′ ← DOMAIN(2#p′, O2)
11: if 2#d′ v 2#r AND ISCOMPATIBLE(1#r, 2#r′) AND

(CONTAINS(2#r′, ’name’) OR CONTAINS(2#r′, 1#r)) then
12: � create ∀x,y (1#p(x)↔ ∃z (2#p(x,z) ∧ 2#p′(z,y)))
13: end if
14: end for
15: end if
16: end for
17: end for
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Figure 3.5: Correspondence of type property chain between hasJournal and the
chain of journal and name. Having a property called name satisfies the requirement
given in the algorithm for the second datatype property which is not particular
shown in the picture. The property hasJournal is contained in OAEI benchmark
301, journal and name in OAEI benchmark 101.



Chapter 4

Experiments

After giving an introduction into ontology matching and the required background
knowledge, different types of complex correspondences have been described as
well as the way of finding them. Also the need of such correspondences has been
discussed and demonstrated. For implementing some types of correspondences a
decision had to be taken which types should be selected based on different criteria,
e.g. the number of appearances in the examined ontologies. All created algorithms
out of the ontologies have been illustrated and explained with an example. Now the
results of the algorithms applied on some ontologies are pointed out and evaluated.
Additionally a short outline of the implementation and the external tools used is
given.

4.1 Implementation

In this chapter the implementation of the algorithms is described. The intention
is to give a short overview but not a complete analysis with the functionality and
the structure. Further the external tools which have been integrated into the system
are presented to get an impression of their function. Everything is implemented
with the Java programming language, release 1.6. Figure 4.1 shows the packages,
classes with attributes, methods and relations between them in a very simplified
way. Rounded rectangles stand for packages, all other rectangles, which are further
divided, for classes and ellipses for external tools. Several classes are contained in
a package because they share or compute the same things. Every class is parti-
tioned into three parts: name, attributes and methods. This separation is similar to
the well-known UML notation, but not as exactly and detailed as UML is. Name
is just the name of the class, attributes are characteristics of the class and mostly
build the content, methods are usually used to compute the content. Additionally

39
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lines with filled arrows illustrate a relation between classes or packages by means
of a class/package uses methods from another class in the package or instantiate a
class. On the other hand lines with a non filled arrow define an inheritance class
hierarchy where every subclass inherits all methods and attributes from its super-
class.
First the used external tools OWL API [1], Pellet [22], Matcher and parts of Al-
como1 for alignments are explained. OWL API is a java implementation for the
Web Ontology Language OWL. With the OWL API, release 2.2.0, it is possible to
access the content of an ontology for further computations. Every package makes
use of this tool because of accessing parts of the ontology such as classes or prop-
erties. Beside OWL, API Pellet, version 2.00 rc4, an OWL reasoner is integrated
to gather additional information. For example if a property has a domain D and
D has the subclass C, OWL API only indicates D as domain and not C although
logically C is of course part of the domain. Pellet can find such auxiliary infor-
mation based on the class hierarchy. Having all this information is necessary to
draw further conclusions when finding correspondences. Further every algorithm
requires values for the similarity of names. To compute these similarities a matcher
with linguistic approaches based on a similarity measure called Levenshtein [15]
is utilized. In general all algorithms are not restricted to a certain matcher, only
the values are needed without exactly knowing how they are calculated. It is only
important that the matcher uses a linguistic approach. For reading in an alignment
in XML or text format some implementations from the project Alcomo have been
used.
Now the packages and classes are explained and their relations among each other.
In the upper left corner the package complexMapping with its classes ComplexMap-
pingException and ComplexMapping can be found. It defines the interface to the
user of the program and every input/output is dealt with here. ComplexMap-
pingException presents the exception which is thrown if an error occurs. Every
other exception is intercepted so classes only have to integrate this exception. Ad-
ditional information about the error are also outputted to know more precisely why
this error occurs. The constants for identifying are used to identify the given error,
with a constructor a new instance of a ComplexMappingException can be created
and toString only defines the output. The main class is called ComplexMapping
and contains the main method. If someone uses the program, the input is com-
mitted to the main method where the data is saved and all further computations
are started with the help of the constructors and the methods createAlignment and
writeAlignment as well. Getting a complex alignment requires two ontologies, a
reference alignment and, if desired, a path to a file where the alignment should be

1The modules used in [17] have been provided.
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written to. No matter which variant is demanded, every correspondence is shown
as output on the console. Further the package correspondence, which in general
handles the complex correspondences, contains the classes Correspondence and
CorrespondenceWriter. The most important class here is Correspondence which
includes the content of a found correspondence, e.g. the included classes and
properties. Of course some other packages/classes implement this class because
of creating correspondences in the algorithms or for the output in the class Com-
plexMapping. The methods toString and toShorterString represent the output of an
individual correspondence where toShorterString does not hold the whole URI but
a shorter version for better readability. Writing a whole alignment is realized by
the class CorrespondenceWriter which writes a file based on its correspondences.
Next, the package called utility, in the upper right corner, includes the classes On-
tology and OntologyAlignment to save all data about an ontology or an alignment.
Having the Ontology class makes it easier to access all data of an ontology like
classes or properties without yet again inspecting the ontology. Methods of this
class are a constructor, buildOntology which is called by the constructor to create
and save all data and finally getters to customize the information for other classes.
OntologyAlignment saves the file path of the alignment and guarantees access to
it. Many packages make use of these classes to get all needed information for fur-
ther computations. Additionally the package reasoner in the bottom right corner
implements the reasoning and everything which is needed for this like reading in
the alignment. Reasoner is the superclass of ReasonerOneOntology and Reason-
erTwoOntologies and contains all attributes and methods both subclasses share to
avoid code replication. On one hand ReasonerOneOntology can just perform rea-
soning on one ontology and does not need another ontology or an alignment in this
case. On the other hand ReasonerTwoOntologies requires two ontologies and an
alignment, which is read in by the Alcomo component, for accessing both ontolo-
gies. If the request is only limited on one ontology, it would be meaningless to
deliver two ontologies and an alignment. Both classes have a method called get-
TypeClasses where one can decide which classes should be returned, subclasses,
superclasses, ancestor and descendant are available. This method internally call
getClasses in its superclass. Having all packages described above, a foundation
for implementing the algorithms is now available. Finally the package correspon-
denceComputation contains a class for every algorithm and some auxiliary classes
to simplify the computations. Every class computing a certain type of complex
correspondence contains the computation method and later also the computed cor-
respondences. ComputingUtility includes methods, like getDomain/getRange or
similarity value of two names, used by several computation classes. The last class
in this package is called ComputationSetting and contains variables which can be
modified. For example the decision whether two classes in a certain algorithm are
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similar is defined here.

Furthermore some information about the resulting alignment is important to
understand which correspondences it contains and why. First the order of the on-
tologies is not distinctive for the complex alignment. Every computation algorithm
to find correspondences is executed in both directions, once with the given order
of the ontologies and later vice versa. Having an order independent alignment
seems to be a good way because of getting symmetric result which is often useful.
Additionally not every found correspondence is available in the alignment. Corre-
spondences are only added if the entity on the left side, the side where only one
entity can be found, is not already in the reference alignment. As an exception
correspondences between object and datatype properties are not considered fur-
ther because otherwise correspondences of type property chain are not found be-
cause of comparing the different property types in the alignments. Although some
correspondence might be correct and they just describe an entity in an additional
way, they are deleted because for the same entity more than one description is not
necessary in this context. If two or more correspondences of the same type are
found and one correspondence can be considered as the most general one, all other
correspondences are not adopted into the alignment. For example two correspon-
dences of type Unqualified Restriction: ∀x (Reviewed Paper(x)↔ ∃y (reviewOf-
Paper(y,x) ∧ Paper(x))) and ∀x (Reviewed Paper(x) ↔ ∃y (reviewOfPaper(y,x) ∧
Submitted Paper(x))) where Reviewed Paper is a class in O1, all other entities out
of O2. Moreover Paper is a superclass of Submitted Paper. In the alignment only
∀x (Reviewed Paper(x) ↔ ∃y (reviewOfPaper(y,x) ∧ Paper(x))) can be found be-
cause of being the more general one. For every entity only one description in terms
of a correspondence should be found, neither another complex correspondence nor
an existing plain equivalence one in the alignment. If several complex correspon-
dences of the same type are available and none of them is more general than other
ones, the similarity values calculated while computing the correspondences are in-
spected. If the sum of the values from one correspondence is greater than the other
ones, this correspondence is chosen and all other correspondences of that kind are
deleted. A difference between the sums of similarity values is not always found.
In this case all possible correspondences are in the alignment. Also different types
of complex correspondences with the same entity on the left side are contained in
the complex alignment later. Altogether the intension is a 1:1 mapping but it is not
always possible because of not having further criteria to decide which is the right
one. Hence an alignment can contain several correspondences with the same left
side.
All correspondences in the alignment are also in first-order-logic like every corre-
spondence before. This is not a standard like XML and is not yet supported by any
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Figure 4.1: Implementation overview with packages, classes and external tools
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cmt confOf ekaw iasted sigkdd sofsem crs openconf pcs

cmt - (1) (1) (1) (1) (2) (2) (2) (2)

confOf - - (1) (1) (1) - (2) (2) (2)

ekaw - - - (1) (1) - - (2) (2)

iasted - - - - (1) - - - -

sigkdd - - - - - - - - -

sofsem - (2) (2) - (2) - (2) (2) (2)

crs - - (2) - (2) - - (2) (2)

openconf - - - - (2) - - - (2)

pcs - - - - (2) - - - -

Table 4.1: Considered conference ontologies for testing

tool which deals with reading in alignments. But it would not be too difficult to
transform the output into an standardized format.

4.2 Settings

After completing the implementation it is possible to test the application. In this
section the settings for all executed tests are specified to understand the results
given in the next section. All tests have been performed on the benchmark, con-
ference and on a second conference set. The first two have been examined while
looking for examples of complex correspondences. Having a set ontologies which
has not been inspected while looking for examples indicates whether the correspon-
dences are general enough or not. If the algorithms are able to find the correspon-
dences in the second conference set, it shows that they are not restricted to specific
patterns which were only available in the other datasets. Although both conference
sets, first one the OAEI alignment 2008 set and second one the alignment AAAI
2007 set, describe the same issue and share some ontologies, they have been de-
veloped independently. This means not every ontology has been created by just
one person, instead the ontologies have been created by different persons without
agreement.

Below all pairs of ontologies are listed to understand the results following in the
next section, Section 4.3. Not every possible pair of ontologies has been taken into
account because a reference alignment does not exist for every pair but is required
by the algorithms. In Table 4.1 all confer

In the benchmark set only the following pairs have been regarded: 101-301,
101-302, 101-303, 101-304. In general, considering more ontologies was not pos-
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sible because either no reference alignment has been available or the ontologies
have not been expressive enough, e.g. they contain too little entities to be suitable
for computing complex correspondences.

As mentioned in Section 4.1, all thresholds for similarity are implemented as
variables which can be modified. In the beginning all variables had to be set to
fixed values to start testing. In general the thresholds should not be too high to
avoid algorithms which only find the previously located examples and neither in-
correct nor other right ones. To show how the results vary, three different sets of
thresholds have been tested. First relatively low thresholds, second mid thresh-
olds and third high thresholds. Thereby it becomes obvious how the choice of the
thresholds affect the results. In the beginning every threshold has been set up to the
same value. The three types Value Restriction, Unqualified Restriction and Prop-
erty Chain provided acceptable results in contrast to Qualified Restriction where
the results were not so good. Far more than three out of four correspondences were
wrong whereby the guide line was to have at least one quarter correct ones. This
relatively high error rate for the Qualified Restriction is explainable because the
two variables which can be set in the corresponding algorithm are not very restrict-
ing. One variable adjusts the threshold which determines if a similarity between the
head noun of a class name inO1 to a complete class name inO2 is available and the
other one decides if an object property is similar to its range. Beside the fact that
classes are the main entities, every class is usually similar to some classes in the
other ontology, especially if similarity is achieved by having a low similarity value.
Also the constraint object property and its range has to be similar is within easy
reach because many properties are named like their range because they map an en-
tity onto a specific range. For example a property is called name because it relates
an entity to its name. Different from Qualified Restriction all other types involve
stronger constraints or operate more on properties, of which there are usually not
so many contained in an ontology, but less on classes. Finding a correspondence
of type Value Restriction is more difficult because a datatype property with a finite
range, here especially a boolean range, has to be contained in one ontology. After
determining the problem with Qualified Restriction, all variables can be modified
such that the values are possibly low but not more than three out of four correspon-
dences of every type are wrong. Of course these settings are fitted and maybe other
ontologies need other values which is not completely excludable. Having the set of
low thresholds, the other two threshold sets have to be defined. For better compar-
ison every variable of one type has the same threshold like in the set with the low
threshold and also the gap between the thresholds of Value Restriction, Unqualified
Restriction, Property Chain and Qualified Restriction is maintained. To see how
the results change but not having to high thresholds, the mid thresholds have been
increased by 0.1 in comparison to the low thresholds. Finally the high thresholds
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have be determined which should be high enough to recognize differences.

• Low thresholds: 0.6 for Qualified Restriction, 0.5 all others

• Mid thresholds: 0.7 for Qualified Restriction, 0.6 all others

• High thresholds: 0.9 for Qualified Restriction, 0.8 all others

Summarizing, all tests are based on the ontologies listed above and have been exe-
cuted with three sets of different thresholds: low, mid and high.

4.3 Results

After explaining the functionality of the algorithms and how they have been im-
plemented, the settings have been defined which determine a testing environment
where tests can be started. The results of the executed tests are given in this sec-
tion to get an impression how useful and successful the ideas are de facto. Below,
three tables are shown with the results of the test runs. Table 4.2 illustrates the
findings with low thresholds, Table 4.3 with mid thresholds and Table 4.4 with
high thresholds. UQR is a abbreviation for Unqualified Restriction, QR for Qual-
ified Restriction, VR for Value Restriction and PC for Property Chain. Every row
shows the number of found correspondences of a certain set of ontologies. Con-
ference 1 are the Conference ontologies which have been examined while trying to
find examples and Conference 2 the second Conference ontologies which have not
been inspected before. Also the sum of correspondences per type can be found in a
row. The last row shows for every type the number of correspondences found in all
three ontology sets. All found correspondences are further divided into right and
wrong correspondences which correspond to the two columns Right and Wrong.
Moreover another column called Size Input Alignment declares how many corre-
spondences have been found in the given reference alignments. Thereby only cor-
respondences between classes have been counted to have a common foundation,
because the Benchmark alignments sometimes contain correspondences between
properties different from the Conference alignments. For every set of ontologies
only one number is available and is composed of the number of correspondences
in every particular input alignment. Specifying the size of the reference alignments
show the amount of complex correspondences compared with the plain equivalence
correspondences in the alignments.

Looking at Table 4.2 most conspicuous might be the number of right Prop-
erty Chain and of wrong Qualified Restriction correspondences. In Section 4.2
the reason for having a high error rate while searching Qualified Restriction corre-
spondences has been already discussed. In the benchmark ontologies only Property
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Right Wrong Size Input Alignment

Ontologies UQR QR VR PC
∑

UQR QR VR PC
∑

Conference 1 1 2 2 0 5 3 10 0 5 18 102

Conference 2 1 2 0 0 3 1 4 0 11 16 173

Benchmark 0 0 0 17 17 0 0 0 8 8 94∑
2 4 2 17 25 4 14 0 24 42 369

Table 4.2: Results with the low thresholds.

Chain occurs and no other types because because they are different from the Con-
ference ontologies. Instead correct Property Chain correspondences can only be
found in these ontologies. Although the Conference 2 ontologies have not been
inspected before, complex correspondences of type Qualified and Unqualified Re-
striction are found. Only correspondences of type Value Restriction are not found,
different from Conference 1, but this type is special and if no datatype property
with a boolean range is available in the ontologies, such a correspondence cannot
be found. Therefore in Conference 2 not so many wrong Qualified and Unqualified
Restriction correspondences are declared.

Right Wrong Size Input Alignment

Ontologies UQR QR VR PC
∑

UQR QR VR PC
∑

Conference 1 1 2 2 0 5 2 3 0 2 7 102

Conference 2 1 2 0 0 3 1 2 0 5 8 173

Benchmark 0 0 0 17 17 0 0 0 6 6 94∑
2 4 2 17 25 3 5 0 13 21 369

Table 4.3: Results with the mid thresholds.

Based on the results of the test with low thresholds comparisons with the mid
thresholds in Table 4.3 can be made. All correct complex correspondences are also
found with the increased thresholds. Only the number of wrong correspondences
has changed, especially the number of Qualified Restriction and Property Chain
has been reduced a lot. These thresholds seem to be very good but they are not
as general as the low thresholds and maybe other ontologies contain correct cor-
respondences which are not found with the mid thresholds different from the low
thresholds. Increasing the thresholds lead in this case to a improvement of the
results hence a increasing has been applied to see if the results are getting better
again.
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Right Wrong Size Input Alignment

Ontologies UQR QR VR PC
∑

UQR QR VR PC
∑

Conference 1 1 0 0 0 1 1 2 0 0 3 102

Conference 2 0 0 0 0 0 1 0 0 1 2 173

Benchmark 0 0 0 17 17 0 0 0 4 4 94∑
1 0 0 17 18 2 2 0 5 9 369

Table 4.4: Results with the high thresholds.

In Table 4.4 the results of the test with the highest threshold are shown. Beside
the number of wrong, now also the number of correct correspondences has been
reduced. Not as maybe imagined only the number of incorrect correspondences
lowered and increasing the thresholds does not improve the result. Choosing very
high thresholds therefore is not the solution to get all correct correspondences and
also reduce the error rate.

Altogether the three different tests exemplify the effect on the results if the
thresholds are changed. Setting the thresholds to a high level does not increase
the number of correct correspondences and simultaneously reduce the number of
incorrect ones. With low thresholds the generality and the chance to find not yet
known examples raises but on the other hand also the error rate raises. A balanced
solution seems to be best except of the generality and the chance to find new exam-
ples. Further every threshold can be modified separated without taking the other
thresholds of the same or different type into account. Thereby it might be possi-
ble to get better results but with exactly fitted thresholds the chance to find new
correspondences decreases a lot. That is why in all tests above only one value has
been determined for all thresholds corresponding to the same type of complex cor-
respondence.

The number of occurrences of these types in the ontologies should not be criti-
cized based on these results because the correspondences may help to get answers
to several questions.Without knowing about these correspondences it would not be
possible. For example someone wants to know which papers have been accepted
on a certain conference. Ontology O1 implements the class Accepted Paper and
ontology O2 the object property hasDecision with range Decision and Acceptance
is a subclass of Decision. This example was already mentioned while explaining
the algorithms in Chapter 3. If the information about the papers are saved in these
both ontologies whereby not every paper is in both ontologies. Without the com-
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plex correspondence of type Qualified Restriction between Accepted Paper and
hasDecision Acceptance it is not possible to really get all accepted papers.

To sum up the results, although if not a huge amount of complex correspon-
dences has been found in the ontologies, the fact that in an unregarded set of ontolo-
gies, Conference 2, these correspondences have also been found shows the bound-
lessness of the types on special ontologies. Additionally detecting complex cor-
respondences makes it possible to gather new information from ontologies which
have not been available before.



Chapter 5

Summary

5.1 Conclusion

Avoiding heterogeneity of ontologies is not indeed possible as soon as different
persons create them. Imagine two humans both independently building an ontol-
ogy describing a company. Naturally the ontologies differ in some facets and are
not completely the same. While comparing the ontologies one probably determines
that not every entity correspond to exactly one entity of the other ontology. There-
fore it might be necessary to compare one entity with a complex term composed of
several entities. Nowadays detecting complex correspondences with state of the art
matching techniques is not possible in a way as it is necessary for ontology match-
ing. Only a few matching systems take complex correspondences, but mostly just
non-equivalence correspondences, into account although the need is obvious. To
get an impression, several types of complex correspondences have been described.
They have been detected in state of the art test sets of the OAEI. It turned out that
four patterns occurred relatively frequent, therefore algorithms have been devel-
oped to automatically find correspondences of these types. Additionally examples
have been shown to get a better comprehension of the patterns and their algorithms.
More precise Unqualified Restriction, Qualified Restriction, Value Restriction and
Property Chain are the types which have been particularly examined. These four
seemed to be most promising and not restricted to some ontologies rather they
describe different forms of modeling an issue.

The algorithms should be as simple as possible and just a few requirements
have to be accomplished to find a correspondence of a certain type. Due to the im-
plementation it is feasible to find complex correspondences automatically. More-
over the implemented algorithms have been tested to see if they work and how
many complex correspondences can be found. Not only the ontologies inspected
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while finding examples have been tested, also some unknown ones. Analyzing
the results, it became obvious that every example manually found has been also
detected while testing the implemented algorithms with the known ontology sets.
Additionally some further examples have been found which were not predictable.
Also complex correspondences in the unknown ontologies have been found which
shows the generality of the types being not restricted to particular ontologies. With
the help of complex correspondences it is possible to get answers to queries which
could not be found before. Imagine data distributed to ontologies which are only re-
lated to each other through complex correspondences. Without knowing the equiv-
alences it is not be possible to get all requested data with only one query. Instead
a query for every ontology fitted to its structure and entities would be necessary.
Actually this is not very meaningful and convenient for a user especially for an
inexperienced one.

All together ignoring complex types reduces the information contained in an
alignment and therefore also information about overlapping concepts in the on-
tologies. In an extreme case the alignment might be empty even if the ontologies
describe the same domain of interest. Due to all reasons mentioned in this the-
sis the need for complex correspondences and their further development becomes
clearly apparent.

5.2 Future Work

There are several open problems for future work. The first problem concerns the
implemented types and their implementation. At present as a strictly 1:1 map-
ping is not available, it may happen that an entity of one complex correspondence
also occurs in another correspondence. If two correspondences share an entity the
similarity values the algorithm computed are checked and if the values from one
correspondence are higher, this correspondence is chosen and can be found in the
alignment later. In some cases the values are exactly the same and no decision
can be taken. Considering techniques to come to a decision or user interaction is
necessary to get a 1:1 mapping.

Furthermore the alignment of complex correspondences is not in a standard-
ized form like XML or text format. Conventional alignment readers are not able
to read in the alignment and even if the alignment would be in a suitable format it
may cause some problems because not just two entities may be a part of the cor-
respondence. Additionally the algorithms could be checked to refine or generalize
them because not every algorithm might be as general as possible and changing



CHAPTER 5. SUMMARY 52

some statements or adding new ones could enhance the results. Especially the type
Value Restriction takes only boolean range into account so far whereas every finite
datatype range is imaginable.
Apart from the implementation, more ontologies with an existing alignment are
needed to get more testing results. If more data is available it would be possible
to adapt the algorithms and to get an expressive estimation for every implemented
type. Another task for future would be the implementation of all types which
have been found. In general finding new types of complex correspondences and
implementing them is required if complex correspondences should be taken into
account. The set of presented types is only an extract of all imaginable types of
correspondences. There is more awareness needed concerning the complexity of
correspondences in ontology matching to achieve the presented ideas. As long as
no one is conscious of complex types, new ones will not be found and existing
matching systems will not be able to compute correspondences of that kind.
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Appendix A

Program Code / Resources

Beside the thesis, also a CD is attached, containing the program code and exe-
cutable files to compute complex mappings. Following folders are on the CD:
Code, Javadoc, Ontologies, Complex Mapping CD, Complex Mapping Windows,
Complex Mapping Linux. The folder Code just contains the java code and can be
imported for example into the IDE Eclipse. In Javadoc the corresponding javadoc
can be found. Every ontology and alignment used during the testing process is con-
tained in Ontologies as well as their complex mappings. In Complex Mapping CD,
Complex Mapping Windows and Complex Mapping Linux the executable files are
located. All of these folders contain a script file to start the application via the
command line and of course the jar-file. Other files are necessary for comput-
ing complex mappings, but not appreciable for the user. Beside the Windows and
Linux version, the CD version also contains the java virtual machine and so the
program can be executed on a windows computer where java is not installed. Both
other folders, Complex Mapping Windows and Complex Mapping Linux, can be
copied to the computer and use the installed java virtual machine if the environ-
ment variable is correctly set.
To start the application, open a shell and switch to the directory where the folder,
containing the starting script, is located. Execute the script file whereby three or
four parameters have to be passed.
Windows:
D:\Complex Mapping Windows>run.bat ontology1 ontology2 referenceAlignment
[fileToWrite].
Linux:
x@y: /D/Complex Mapping Linux>./run.sh ontology1 ontology2 referenceAlign-
ment [fileToWrite].
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The first two parameters ontology1 and ontology2 are the paths to the ontolo-
gies of these the complex mapping should be created, the third one referenceAlign-
ment the path to the reference alignment. All three parameters are necessary and
cannot be omitted. To get a file containing the complex correspondences and not
only to see them on command line, fileToWrite is optional and specify the path to
a file where the correspondences should be written to. Only the URIs in shortened
form are outputted for a better readability.
An example for Windows: D:\Complex Mapping Windows>run.bat cmt.owl ekaw.owl
cmt-ekaw.rdf
Entering this command, the complex correspondences between the ontologies cmt
and ekaw will be computed and printed, if files cmt.owl, ekaw.owl and cmt-ekaw.rdf
are located in the same folder as run.bat.

Computing the complex alignment, especially the similarity between names, is
based on the mid thresholds described in Sectionsec:setting and sec:results because
they seemed to be the best.
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